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Abstract

The movement patterns of a diverse range of animals have scale-free
characteristics. These characteristics provide necessary but not sufficient
conditions for the presence of movement patterns that can be approximated
by Lévy walks. Nevertheless, it has been widely assumed that the occurrence
of scale-free animal movements can indeed be attributed to the presence of
Lévy walks. This is, in part, because it is known that the super-diffusive
properties of Lévy walks can be advantageous in random search scenarios
when searchers have little or no prior knowledge of target locations. However,
fractional Brownian motions (fBms) and fractional Lévy motions (fLms) are
both scale-free and super-diffusive, and so it is possible that these motions
rather than Lévy walks underlie some or all occurrences of scale-free animal
movement patterns. Here this possibility is examined in numerical simulations
through a determination of the searching efficiencies of fBm and fLm searches.
It is shown that these searches are less efficient than Lévy walk searches.
This finding does not rule out the possibility that some animals with scale-free
movement patterns are executing fBm and fLm searches, but it does make Lévy
walk searches the more likely possibility.

PACS numbers: 02.50.Ey, 05.10.Gg, 05.40.Fb

1. Introduction

Over recent years there has been an accumulation of evidence that many animals, including
microzooplankton (Bartumeus et al 2003), a species of African jackal (Atkinson et al 2002),
honeybees (Reynolds et al 2007a, 2007b), fruit flies (Reynolds and Frye 2007) and some
marine predators (Sims et al 2008), have scale-free characteristics. Some earlier studies
claiming evidence for scale-free characteristics (Viswanathan et al 1996, 1999) have, however,
been overturned (Edwards et al 2007). The later studies have so far stood up to scrutiny
(Buchanan 2008). One of the simplest indicators of scale-free behaviour is power-law scaling
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of the distribution of movement lengths made between successive, significant changes in
direction. For microzooplankton, honeybees and marine predators, these distributions exhibit
approximate inverse-square power-law scaling over about one or two decades (Bartumeus et al
2003, Reynolds et al 2007a, 2007b, Sims et al 2008). The results of ‘random-walk analyses’
of movement patterns can provide stronger evidence for scale-free behaviour (Atkinson et al
2002, Reynolds et al 2007a, 2007b, Sims et al 2008). In these analyses, time series, u(t), of
the numbers of turns made within time intervals from t to t + �t, are treated as increments
in a random walk. The analysis is meaningful when the turns are biologically significant
because they represent abrupt changes in otherwise nearly straight-line motion (Bartumeus
2009). The flight patterns of Drosophila fruit flies in still air are the archetypical example
of this, as fruit flies explore their landscape using a series of straight-flight paths punctuated
by rapid 90◦ body saccades. Similarly, the flight directions of honeybees change abruptly
over several seconds rather than gradually through the accumulation of many small turns over
much longer times (Reynolds et al 2007a, 2007b). The net ‘displacement’ is just the running
sum n(t) = ∑N=t/�t

i=0 u(i). If values of u(t) are completely uncorrelated and behave like
‘white noise’, then the root mean square of the running sum would obey the scaling relation
F =

√
〈(n(t) − 〈n(t)〉)2〉 ∝ tα , where α = 1/2 and where the angular brackets denote an

ensemble average over all walks in the data set (Peng et al 1993). Short-term correlations in
the data may cause the initial slope of a plot of log(F )/ log(t) to differ from 1/2, although
it will still approach 1/2 at longer times. Movement patterns that can be approximated by
correlated random walks (Turchin 1998) would produce this scaling as would multi-scale
movements, e.g. bouts of ballistic motion punctuated by bouts of Brownian motion that are
representative of some movement patterns in the presence of patchily distributed resources
(Reynolds 2008a). Long-term power-law correlations (Peng et al 1993) will generate α values
different from 1/2. The movement patterns of honeybees, jackals and some marine predators
are characterized by α �= 1/2 and this implies that long-term power-law correlations exist in
these data (Atkinson et al 2002, Reynolds et al 2007a, 2007b, Sims et al 2008). The movement
patterns of jackals and honeybees also exhibit fractal scaling over 1–2 decades of scale and
this provides further evidence for the presence of scale-free movement patterns (Atkinson et al
2002, Reynolds et al 2007a, 2007b).

The occurrence of scale-free characteristics in the movement patterns of some animals
has been attributed to the presence of Lévy walks (Atkinson et al 2002, Bartumeus et al 2003,
Ramos-Fernandez et al 2004, Reynolds et al 2007a, 2007b, Sims et al 2008). Lévy walks,
named after the French mathematician Paul Pierre Lévy, are comprised of random sequences
of movement segments (such as flying, swimming or walking), with lengths, l, drawn from a
probability distribution function having a power-law tail, p(l) ∼ l−μ, where 1 < μ < 3. For
μ > 3, sums of length, i.e. total displacements, converge to a Gaussian distribution by virtue of
the Central Limit Theorem so that motions are effectively Brownian at sufficiently large scales.
Levy indices μ � 1 do not correspond to normalizable distributions with probabilities that sum
to unity. Lévy walks with μ → 1 correspond to randomly orientated straight-line movements.
Qualitatively, a Lévy walk is characterized by frequently occurring but relatively short move
lengths punctuated by rarely occurring longer lengths that in turn are punctuated by even more
rarely and longer lengths, and so on. Over much iteration, a Lévy walk will be distributed much
farther from its starting position than a Gaussian (i.e. Brownian) random walk of the same
length and is said to be ‘super-diffusive’. In some cases, Lévy walk movement patterns may
be emergent properties of the manner in which the animals interact with their environments
(Boyer et al 2006, Reynolds 2007, 2008b). Other examples have been attributed to innate
evolved searching behaviours. This is principally because the scale-free and super-diffusive
properties of Lévy walks can lead to advantages over Gaussian motions in random search
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scenarios when searchers have little or prior knowledge of target locations (Bartumeus et al
2005). For example, Viswanathan et al (1999) demonstrated that μ = 2 constitutes an optimal
Lévy walk search strategy for locating randomly and sparsely distributed targets that once
visited are not depleted but instead remain targets for future searches; a scenario mimicking
searches for patchily distributed resources and searching when prey items can evade capture
(Reynolds and Bartumeus 2009). Under such conditions, a μ = 2 Lévy search strategy
minimizes the mean distance travelled and so minimizes the mean energy expended before
encountering a target. More recently, Reynolds and Bartumeus (2009) reported that Lévy
walks with μ � 2 and straight-line ballistic motions can be equally effective when searching
destructively in two- and three-dimensional environments.

Inverse-square power-law distribution of move lengths, power-law scaling of the random-
walk time series data, and fractal scaling of entire trajectories provide necessary but not
sufficient conditions for the presence of μ ≈ 2 Lévy walks in the movement patterns of
some animals. This is because, as shown later, these indicators of scale-free behaviour do
not discriminate among Lévy walks, fractional Brownian motions (fBm) and fractional Lévy
motions (fLm) (Mandelbrot and Van Ness 1968). It is therefore necessary to examine these
alternative models. Indeed, this is crucial because the key to prediction and understanding
lies in the elucidation of mechanisms underlying the observed patterns (Levin 1992). Frontier
(1987) was perhaps the first to propose that fBms could be used to characterize the movements
of some animals (insects). The conjecture finds support in recent measurements of natural
conductance fluctuations in lipid membranes that can be approximately modelled as fBms and
fLms (Kotulska 2007). Such fluctuations could in principle provide timing signals necessary
for the execution of fBms and fLms movement patterns.

In the pioneering work of Mandelbrot and Van Ness (1968), fBm was defined by its
stochastic representation,

BH(t) = 1

� (H + 1/2)

(∫ t

−∞
(t − s)H−1/2 dB(s) +

∫ 0

−∞
sH−1/2dB(s)

)
, (1)

where � is the gamma function, 0 < H < 1 is the Hurst parameter and t is time. The integrator
B is an ordinary Brownian motion. Ordinary Brownian motion is recovered from (1) when
H = 1/2. fBm is uniquely characterized by the following properties: BH(t) has statistically
stationary increments, the initial value BH(0) = 0, the mean and variance obtained by ensemble
averaging over many walks evolve according to

〈
BH(t)

〉 = 0,
〈
B2

H (t)
〉 = t2H and BH(t) has

a Gaussian distribution when t > 0. fBms are, therefore, sub-diffusive when H < 1/2 and
super-diffusive when H > 1/2, because the position variance then grows faster than linearly in
time.

Increments in fBms have autocorrelation

〈[BH (k + 1) − BH (k)] [BH (1) − BH(0)]〉
= 1

2 [|k − 1|2H − 2 |k|2H + |k + 1|2H ] ∼
k→∞

H (2H − 1) k2H−2.
(2)

This span of interdependence between increments is infinite. The autocorrelations (2) are
negative when 0 < H < 1/2 and positive when 1/2 < H < 1. Positive correlations lead
to paths that are straighter and smoother than Brownian walks (figure 1). It is evident from
figure 1 that fBms, like Lévy walks, tend to cluster in self-similar patterns that are characteristic
of fractals, and that occasionally occurring long moves initiate new clusters. The longer the
move, the less likely is its occurrence.

It is possible that these scale-free and super-diffusive properties lead to advantages over
Lévy walks in random searches scenarios. This would have significant ramifications for the
interpretation of scale-free animal movement patterns because animals can be expected to
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Figure 1. Examples of simulated fBm generated using (4). Each example contains 1000 increments
with unit variance. Directional persistence becomes more evident, has the Hurst parameter, H,
increases from 1/2 to 1.

adopt advantageous searching strategies. Here, the efficiencies of fBm and also fLm searches
are examined in numerical simulations. fLm can be defined by its stochastic representation

LH(t) = 1

� (H + 1/2)

(∫ t

−∞
(t − s)H−1/2 dL(s) +

∫ 0

−∞
sH−1/2 dL(s)

)
, (3)

where the integrator L is ordinary Lévy walks. Ordinary Lévy walks are recovered when H
= 0.5. The orientation of successive walk segments is positively correlated (directional
persistence) when H > 0.5 and negatively correlated (directional anti-persistence) when
H < 0.5.

The simulation of fBms and fLms, their possible correspondence with scale-free animal
movement patterns and the searching efficiencies of fBm and fLm searches are presented in
sections 2 and 3. This is followed, in section 4, by a discussion.

2. Optimal fractional Brownian motion searching

2.1. Simulating fBm

fBms were simulated by approximating the stochastic integrals in (1) by stochastic sums. The
approximation is given by

B
/

H (n) = CH

(
n∑

i=−N

(n − i)H−1/2 B(i) −
0∑

i=−N

iH−1/2B(i)

)
, (4)

where B(i) are independent Gaussian random quantities with mean zero and unit variance, and
CH is chosen so that increments BH(k + 1) − BH(k) have unit variance. The approximation
is not appropriate in a strict sense because the Brownian paths in (1), although continuous,
are non-differentiable and, more importantly, because they do not have bounded variation
with probability one (Dieker 2004). Here, these issues are set aside and approximation (4) is
adopted because animal movement patterns cannot possibly adhere to the strict definition of
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an fBm (1) but could, at least in principle, adhere to its discrete analogue (4). Following Qian
et al (1998), two-dimensional fBms are simulated using two independent one-dimensional
fBm for movements in the x- and y-directions. The results of numerical simulations (not
shown) reveal that the mean square displacements of exactly represented and approximately
represented fBms, (1,4), have the same power-law scaling:

〈
B2

H

〉 = t2H and
〈
B

/ 2
H

〉 = t2H . It
is also found that the self-affine curves (plots of the x-coordinate as a function of time) of
approximately and exactly represented fBm have, to close approximation, the same fractal
(box-counting) dimension, D = 2 − H . Estimates for the fractal dimension were based on
250 independent fBms, each with 1000 increments for H = 0.5, 0.6, 0.7, 0.8 and 0.9. The
average number of boxes nbox of size lbox required to enclose the fBms was plotted against lbox.
A power-law relationship of the form nbox ∝ l−D would be indicative of fractal scaling with
fractal dimension D. Here the fractal dimension was estimated by least-squares regression on
log(nbox) of log(lbox) for 10 < n < 103. Correlation coefficients (r2 values) are greater than
0.99 indicating that over 99% of the data were well represented by nbox ∝ l−D . The results of
these numerical simulations do not depend sensitively upon the value of the lower bound N in
the stochastic sums in (4) when N � 1000. For this reason, the results of all further analyses
are presented for N = 1000.

2.2. Correspondence between fBm and scale-free animal movement patterns

To facilitate analysis and to draw a direct analogy with the analysis of animal movement
patterns, fBm trajectories are represented as sequences of straight-line moves between
successive significant turns. Here significant directional changes are deemed to have arisen
when the angle between two successive incremental movements (i.e. between three successive
positions) is acute (figure 2, insets). Distributions of movement lengths do not change
significantly when the critical angle used to define a turn is changed by ±30

◦
. Irrespective

of the discretization employed, the tail of the distribution of straight-line move lengths when
plotted on log–log scales becomes straighter as the Hurst parameter increases from 0.5 to 1.0
(figure 2). This is indicative of the distribution of straight-line move lengths becoming better
approximated by a power law. Perhaps the most robust approach for testing the presence
of power-law scaling is to utilize maximum likelihood estimates (MLE) and the Akaike
information criteria (AIC), as advocated by Edwards et al (2007). Here, following Edwards
et al (2007), this approach is used to test whether the simulation data provide more evidence
for distributions of straight-line movement lengths, l, having power law

P1(l) = Cl−μ, l � a (5)

or exponential tails

P2(l) = λ e−λ(l−a), l � a, (6)

where C = (μ − 1)aμ−1 is a normalization constant. The key quantities of interest in this
analysis are the MLE for the exponent, μ, that characterizes the best-fit power-law tail and
the Akaike weights. The Akaike weight, w, for the power-law tail can be considered as the
weight of evidence in favour of the power-law tail being the better model of the simulation
data, i.e. the Akaike weight for a power-law can vary from 0 (no support) to 1 (complete
support). A power-law tail is convincing favour over an exponential tail when H > 0.8 (e.g.
H = 0.85, w = 1.00, μ = 2.93; H = 0.95 and w = 1.00, μ = 2.2). This analysis was based
on 250 independent fBm with 1000 increments for each H. For H < 0.8 exponential tails are
convincingly favoured over a power-law tails.

The results of a random-walk analysis applied to the time series of turns data are more
revealing. It provides clear evidence of scale-free behaviour. As H increases from 0.5 to 1.0,
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Figure 2. Numbers, nl, of straight-line moves of lengths, l, made between successive, significant
changes in direction. Here directional changes are deemed to have arisen where the direction
between two successive walk segments (i.e. between 3 successive positions) is less than 90◦ (i.e.
when the angle is acute). Distributions of movement lengths do not change significantly when
the critical angle used to define a turn is changed by ±30◦. The sizes of the data collection bins
are logarithmically distributed and numbers of straight-line walk segments have been normalised
by the bin sizes. Distributions were determined from 250 independently simulated fBm. The
inserts show an example of a fBm with 1000 increments, the location of the 90◦ turns, and its
representation in terms of straight line moves between turning locations.

the value of scaling exponent α increases monotonically from 0.5 to about 0.75 (figure 3).
This saturation value is less than the values of α that characterize the movement patterns of
jackals and honeybees (Atkinson et al 2002, Reynolds et al 2007a, 2007b).

2.3. Optimal fBm searching strategy

Viswanathan et al (1999) considered an idealized Lévy walk model in which a searcher moves
on a straight line towards the nearest target if the target lies within the ‘direct perception’
distance, r, otherwise it chooses a direction at random and a distance, l, drawn from a power-
law distribution p(�) = (μ − 1)rμ−1|�|−μ when � > r, otherwise p(�) = 0, where 1 < μ < 3.
It then moves incrementally towards the new location whilst constantly seeking for targets
within a radius, r. If no target is detected, it stops after traversing the distance l and chooses a
new direction and a new distance, otherwise it proceeds to the target. Viswanathan et al (1999)
found that μ = 2 Lévy walks are optimal for the location of randomly and sparsely distributed
targets that once visited are not depleted but instead remain targets for later searches. Straight-
line motions are optimal for destructive searching and these correspond to fBm (and fLm)
with H = 1.

Here the efficiencies of fBm searches are investigated using a natural adaptation of the
model of Viswanathan et al (1999) in which the Lévy walk movement patterns are replaced
by fBm movement patterns whilst retaining all other model ingredients. When 0 < H < 1/2,
fBm are sub-diffusive and as a consequence, searching is necessarily less efficient than a
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Figure 3. The net root mean square displacement, F, associated with the time series of turning
points. The inset shows the least-squares best fit, scaling exponent, α, characterising the power-
law scaling of the displacement F as a function of the Hurst parameter, H. The least-square fit is
obtained from a linear regression of log F on log n for 10 < n < 103. Correlation coefficients
(r2 values) are greater than 0.9 indicating that over 90% of the data are well represented by F ∝ tα .
Displacements were determined from 250 independently simulated fBm.

Brownian search. The results of numerical simulations reveal that the searching efficiency
decreases monotonically as H increases from 1/2 to 1, i.e. decreases with increasing directional
persistence of the fBm (figure 4). These fBm searches are therefore less efficient than Brownian
searches (H = 1/2) and so less efficient than Lévy walk searches which outperform Brownian
searches (Viswanathan et al 1999).

3. Optimal fractional Lévy-motion searching

fLms were simulated by approximating the stochastic integrals in their stochastic
representation (3) by stochastic sums. The approximation is given by

L
/

H (n) = CH

(
n∑

i=−N

(n − i)H−1/2 L(i) −
0∑

i=−N

iH−1/2L(i)

)
, (7)

where L(i) are independent Lévy walks and the constant CH is chosen so that the smallest
increment, LH(k + 1) − LH(k) has unit size. Step lengths, l, are drawn from a power-law
distribution p(�) = (μ − 1)rμ−1|�|−μ when � > r otherwise p(�) = 0. Two-dimensional
fLms are simulated using two independent one-dimensional fLms for movements in the x- and
y-directions. The results of numerical simulations do not depend sensitively upon the value of
the lower bound N in the stochastic sums in (7) when N � 1000. For this reason, results are
shown for N = 1000.

Persistence (H > 1/2) leads to a reduction in searching efficiencies, and as a consequence,
fLm searches are less effective than Lévy walk searches (H = 0.5) (figures 5(a) and (b)).
Nevertheless, the optimal value μopt ≈ 2 is robust with respect to H, i.e. robust with respect
to long-range persistent ‘memory effects’. This new result complements that of Viswanathan
et al (2001) and Bartumeus et al (2005), who reported that the optimal value μopt ≈ 2 is
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(a) (b)

Figure 4. (a) The searching efficiency, η, of one-dimensional fBm searches as a function of the
Hurst parameter, H. The searching efficiency is the reciprocal of the mean distance travelled before
first arriving at a target. The distance between adjacent targets has been approximated by the mean
distance, L, between adjacent targets. Targets are therefore located at x = 0 and x = L. Searching
commences from x = 10 (i.e. in the immediate vicinity of a target) and ends when the searcher
is within one unit of length of a target. In these units of length, increments in the fBm have
unit variance. Searching efficiencies were determined from 250 independently simulated fBm.
Simulation data are shown for L = 103 (•) and L = 104 (◦). The lines are added to guide the eye.
The emergence of Brownian motion (H = 1/2) as an optimal strategy is not sensitively dependent
upon L when L > 103. (b) The searching efficiency, η, of two-dimensional fBm searches as a
function of the Hurst parameter, H. Data is shown for searches in arena of size 20002 containing
100 (◦) and 10 000 (•) randomly distributed targets. Searches commence in the immediate vicinity
of a target that is closest to the centre of the arena. Statistical stationary averages are formed by
ensemble averaging over 1000 searches each of length 1000. Searching efficiencies increase with
decreasing H. The same trends are seen for other arena sizes and search lengths. The lines are
added to guide the eye.

robust with respect to short-range ‘memory effects’. It is evident from figure 5(c) that the
inverse-square power-law distribution of move lengths that characterizes optimal μ = 2 Lévy
walks is also robust with respect to the inclusion of long-range persistence associated with
small departures from H = 0.5.

4. Discussion

The movement patterns of a diverse range of animals (microzooplanktons, Drosophila fruit
flies, honeybees, jackals and some marine predators) have scale-free characteristics (Atkinson
et al 2002, Bartumeus et al 2003, Reynolds et al 2007a, 2007b, Reynolds and Frye 2007, Sims
et al 2008). The results of these analyses provide necessarily but not sufficient conditions
for the presence of Lévy walks, since it is possible that either fBm or fLm rather than Lévy
walks underlie some or all of these movement patterns (figures 2, 3 and 5). The case for
Lévy walks is bolstered by the fact that Lévy walks can optimize the success of random
encounters in a wide range of search scenarios, and consequently represent robust solutions to
general search problems. It is undermined, some what, by the fact that the scale-invariant and
super-diffusive properties of Lévy walks which lead to advantages over Gaussian movements
in random search scenarios (Bartumeus et al 2005) are shared by fBm and fLm (Mandelbrot
and Van Ness 1968).
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(a) (b)

(c)

Figure 5. (a) The searching efficiency, η, of one-dimensional Lévy walk searches (H = 0.5) and
fLm searches (H = 0.75) as a function the Lévy parameter, μ. The searching efficiency is the
reciprocal of the mean distance travelled before first arriving at a target. The distance between
adjacent targets has been approximated by the mean distance, L, between adjacent targets. Targets
are located at x = 0 and x = L. Searching commences from x = 10 (i.e. in the immediate vicinity of
a target) and ends when the searcher is within one unit of length of a target. Searching efficiencies
were determined from 250 independently simulated fLm. Simulation data are shown for L = 103

(•). The lines are added to guide the eye. The optimality of μ ≈ 2 (H = 0.5) Lévy walks is not
sensitively dependent upon L when L > 103. (b) The searching efficiency, η, of two-dimensional
Lévy walk searches (H = 0.5) and fLm searches (H = 0.75) as a function the Lévy parameter, μ.
Data is shown for searches in arena of size 20002 containing 10 000 randomly distributed targets.
Searches commence in the immediate vicinity of a target that is closest to the centre of the arena.
Statistical stationary averages are formed by ensemble averaging over 1000 searches each of length
1000. The same trends are seen for other arena sizes and search lengths. The lines are added to
guide the eye. (c) The distribution of move lengths for optimal (μ = 2) Lévy walk searches (H =
0.5) and for the best fLm search with H = 0.75. Inverse-square power-law scaling is indicated.

In this paper, it was shown that fBm and fLm searches are less efficient than Lévy walk
searches (figures 4 and 5). For H < 0.5, this was because motions are sub-diffusive rather
than super-diffusive. For H > 0.5, it is mainly because the directional persistence reduces
the likelihood of revisiting previously visited territory and so increases the likelihood that
nearby targets will be missed. These findings do not rule out the possibility that animals with
innate scale-free searching patterns are executing fBm and fLm searches, but it does make
Lévy walk searches the more likely possibility. Underlying this assertion is an evolutionary
hypothesis, i.e. the notion that Lévy walks can be considered as adaptive strategies when the
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empirical data are consistent with the specific conditions that led to advantageous or optimal
Lévy walks (Bartumeus 2007). According to this evolutionary hypothesis, organizational
levels (physiological, sensorial) that are plastic and acted upon selection pressure may tune
up Lévy walk search strategies. Lévy walk search strategies may, for instance, arise from
conspecific odour trail avoidance, a behaviour designed to avoid locations previously visited
traversed by individuals of the same species (Reynolds 2007). Lévy search patterns in airborne
and some marine animals, on the other hand, may have neurological underpinnings. Inverse-
square power-law distributions of spontaneous neuron firing signals, that could provide the
timing signals necessary for the execution of optimal Lévy searches have been observed in
in vitro studies (Segev et al 2002, Beggs and Plenz 2003, Mazzoni et al 2007). This warrants
further investigation because recent analytical and numerical studies suggest that inverse-
square power-law distributions of spontaneous firing times are a robust, emergent property of
neuronal systems (Levina et al 2007). Timing signals sufficient for the execution of optimal
Lévy searches may therefore be ubiquitous. The problem is that living neural networks grown
in vitro show network behaviour that is decidedly different from any neural network in the
living animal (Eckmann et al 2007). The applicability of outcomes of in vitro studies to the
understanding of scale-free movements must therefore be treated with a modicum of doubt.
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flight search patterns of biological organisms Physica A 295 85–8
Viswanathan G M, Afanasyev V, Buldyrev S V, Murphy E J, Prince P A and Stanley H E 1996 Lévy flight search
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